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This article reports on the results of a study of the optimum form of three-dimensional bodies for the penetration of 

dense media in cases in which, given certain assumptions, the interaction of the medium and the body can be examined within 

the framework of the law of locality [1]. The method of local variations [2] was used to develop a numerical algorithm to 

search for forms of the body that would maximize the depth of penetration of the medium. 

Examples are presented of the solution of a variational problem with different isoperimetric conditions on the geometry 

of the body. The examples show that, in terms of depth of penetration, three-dimensional bodies whose form has been 

optimized may have a significant advantage over equivalent traditional solids of revolution. 

1. Classes of Bodies. We will examine the motion of a body whose form is described by the following equation in 

a cylindrical coordinate system (r. 0, x), with its origin at the tip of the body and the x-axis directed oppositely to the direction 

of motion 

/ ( r ,  O, x )  -- �9 - ~o(x)R(O) = O, (1.1) 

where ~(x), R(0) are functions determining the longitudinal and transverse contours of the body, respectively. Here, ~o(0) = 

0, ~(L) = 1 (where L is the specified characteristic length of the head of the body). 

We will henceforth assume that the longitudinal contour of the head is known and is given by the equation 

~ ( x )  -= x / L  = ~. (1.2) 

If the head, the area of the center section of which is S m, is a cone of  length L, then R(0) = q~m/a" = L r / 2  (r  is the 

relative thickness of  the head) and ~o(x) --- 1 at x > L. 

If we want to shape the head so as to maximize depth of penetration for a given impact velocity v 0 and cross-sectional 

area Sm, we need to consider that different isoperimetric conditions may be imposed on the body, depending on the practical 

requirements. The conditions most often encountered are specification of the mass (volume) of the body and limitation of its 

transverse dimensions. 

There are two basic approaches to resolution of the problem. 

In the first approach, depth of penetration is increased by the "deformation" of a certain frontal region of  the body (Fig. 

1). This region has a circular midsection and a head with a specified relative thickness r (dashed lines). In this case,:the surface 

of the new, conical head will contact with the circular cylinder along a space curve 

~g(o)  - ~ / 2  = o, g(o) = n ( o ) / s  (1.3) 

Given a known function g(0) ~ r /2 ,  the head will be conical for ~ = ~1 = z/(2gl) (see Fig. 1) and will consist of 

conical and cylindrical surfaces with ~I < ~ < ~2 = r/(2g0), where gl and go are respectively the largest and smallest values 

of g(0) on the segment [0, 2~r]. 

Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, pp. 32-40, July-August, 1994. 

Original article submitted April 10, 1992; revision submitted September 21, 1993. 

0021-8944/94/3504-0515512.50 - �9 Plenum Publishing Corporation 515 



Fig. 1 

As does the equivalent comparison body (circular cone - -  cylinder), bodies of the type just described have a midsection 

in the form of a circle and will be referred to as bodies of class 1. 

The second approach to optimizing the shape of the body involves making a transition from an equivalent solid of 

revolution with the transverse dimension 2 ~ J - ~  to a three-dimensional body with a large transverse dimension and the same 

midsection area Sm. In this case, we are optimizing the head of the body over the length L (~ < I), while at ~ > 1 we have 

a cylindrical surface stretched over the contour of the midsection of the three-dimensional head (Fig. 2). We will refer to bodies 

of this type as class 2 bodies. 

The above two classes of bodies suggest the types of configurations that might maximize depth of penetration compared 

to equivalent solids of revolution. They also determine the types of variational problems that should be examined. We will 

discuss these problems below. It should be noted that solids of revolution with a conical head having a relative thickness ~- are 

among the shapes included in classes 1 and 2. 

2. Depth of  Penetration of the Body. Let S be the surface on which the body makes contact with the medium. Then 

the resistance of the body can be written in the form 

D = q f f [ - c ( n . x )  + c ( ~ . x ) l d S ,  (2.1) 
.$ 

where q = 0v2/2 (p is the density of the medium); x, n, and z are unit vectors on the x-axis, an outer normal to the surface 

of  the body, and a tangent_to the surface directed downflow at the point being examined; here, z[n • x] = 0, which in most 

cases is the only assumption made; ep and c r are coefficients expressing the pressure and friction on the surface of the body. 

Within the framework of the law of local interaction - -  when it is assumed that the force exerted by a medium on an 

element of surface area of  a body depends only on its orientation relative to the direction of motion - -  the coefficients cp and 

e T can be represented by the expressions 

c = A l (u /uo )2 (n ' x )  2 - B1(o /oo) (n 'x )  + C~, 

c = A2(u /vo)2(n 'x )  2 - B z ( u / u ~ ( n ' x )  + {22. (2.2) 

In the general case, coefficients A i, B i, C i (i = 1, 2) of local model (2.2) depend on the characteristics of  the medium 

and impact velocity v 0. Either they can be empirical constants [5, 6] or, with certain assumptions, they can be determined from 

the theory in [3, 4]. 

We will restrict ourselves to the case when cp and cz are connected by the relation 

c = / ~ c  (2.3) 

is the coefficient of  Coulomb friction). We further assume that we can ignore the decrease in impact velocity v 0 over the 

period of time during which the head of the body has not yet fully penetrated the medium. Estimates have shown this to be 

valid for impact velocities v 0 > 10(z/2) -1 m/see and v 0 > (102-105/2)(r/2) -1 m/see when the impact is against the ground 

and metallic barriers, respectively. Then using Eqs. (2.1-2.3) and integrating the equation of motion of  a body of  mass M in 

the case of  an impact which is normal to the surface of  the medium, we obtain the following expression for the depth of 

penetration: 

l( t M4 B_ +cy, ) + . .  
H - -  2 q A Y  1 In 1 + C Y3 (2.4) 
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Fig. 2 

/ 
The subscript 1 was omitted from A, B, and C in (2.4); the quantity ~ has different analytic representations, depending 

on the value of E = 4ACY1Y3/(BY2) 2 - 1: 

1) when E > 0 

= 2E'q/2tarctg(E-I/2) - arctg(E~ ~'t/2) l, 

E o = 1 + 2 A Y I / ( B Y 2 )  ; 

2) when E = 0 

* : - 2 0  - G~); 

E < 0  
3) when [~__~o + ~z-~)(~ _ :z-~)] 

'~ = (-e)-l'2tn - r + 4-z~)]" 

When B = 0 (which corresponds in particular to the Sagomonyan models for soils and metals [3, 4] and the Zabudskii 

model for soils [3, 5]), cI, vanishes and the expression for depth of penetration takes the form 

When A = C = 0 (Berezanskaya model for soils [5]), the functional H can be written in the form 

-4 H :  ~ (2.6) 

In Eqs. (2.4-2.6), Yi (i = 1, 2, 3) are functionals dependent both on the form of the surface S over which the body 

makes contact with the medium and on the friction coefficient ~: 

y~ = f J ' t - ( n . x )  + ~,(T.x)iCn.x)'~s, 
$ 

Y2 = - f f  I-(n .x) + u(T'x) i(n.x)aS, (2.7) 
$ 

y~ = f f t - ( n . x )  + ~,(~.~)]as. 
$ 

Using a cavitational scheme to characterize flow about the body, we take S to be the surface of the head. 

In the general case, the problem of determining maximum depth of penetration reduces to a variational problem which 

involves finding the maximum of functional (2.4) in a class of surfaces satisfying prescribed isoperimetric conditions. For 

bodies whose surfaces belong to classes 1 and 2, we write integrals (2.7) as follows in accordance with (1.1)-(1.3) 

r ~ = T 0  

2 0 

2~'2 
z dO, 

(e~ + d )  

(~ + ~)u, dO, 

0 

r = 1 + (k/g) 2, "2 = g + ur 

(2.8) 
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In (2.8), g = dg/d0; z is the parameter characterizing the class of bodies, z = (~-/(2g)) 2 for bodies of class i and z = 1 for 

bodies of class 2. 
3. Formulation of the Variational Problem. Functionals (2.4)-(2.6) are not standard linear functionals and are difficult 

to study analytically. For thin bodies (g2 < < 1), an analytic solution to the variational problem can be obtained by using the 

method described in [1]. The transverse contour of the optimum thin body consists of n identical cycles (see Figs. 1 and 2, 

n = 4), each of which contains two symmetric arcs with g _> 0 and g _< 0, respectively. Such bodies are referred to as radial 

in aerodynamics. 

For non-thin bodies, it is not possible to analytically solve the variational problem of maximizing functional (2.4) for 

different isoperimetric conditions. 
Proceeding on the basis of results of studies of optimum thin bodies [1], we will assume that the heads of bodies 

belonging to classes 1 and 2 are of cyclically symmetric form. Then the search for the optimum surface of the head reduces 

to searching for g(0) in a half-cycle of the transverse contour (with n given) under the condition 

g(O) -> 0, 0 ~ [0, ~ / n  I. (3.1) 

The number of cycles n is chosen either on the basis of design considerations or by comparing the depth of penetrations of 

optimum bodies with different numbers of cycles. 
Equation (2.8) has the following form for cyclically symmetric surfaces 

Yl = L2n f z dO, 
o ( ~  + ~) 

(3.2) 
�9 ,/n g ~2 1 

Y~ = :?n z ( ~  + s:)~ A ao, Y3 -- L~n f 

We examined the following variational problems for bodies of class 1 (see Fig. i) to determine the optimum form for 

the head. The problems differ in the isoperimetric and boundary conditions imposed on the transverse contour g(0). 

1. "Deformation"-of the head takes place with conservation of its volume, which corresponds to the condition 

x/n 
dO 7at 

f-7= rn (3.3) 
0 

In this case, no limitations are imposed on the ends of the extremal g(0). 
2. The volume of  the body is conserved (3.3) and the minimum dimension of the transverse contour is prescribed (go 

- g ( 0 )  < r/2). 
3. The volume of  the body is not conserved, but the ends of  the extremal are fixed in the section ~ = 1: 

go < 312, gt =- g ( ~ l n )  = r l  

In problems 1 and 2, ~1 <-- 1, ~2 ---- r/(2g0) (see Fig. 1) because of volume conservation condition (3.3). In problem 

(3), the radial and cylindrical surfaces come into contact at ~ 1 = 1. 
For bodies of class 2 (Fig. 2), we examined two problems in addition to variational problems 1-3. In the case of  bodies 

of class 2, the volume conservation condition - -  which here coincides with the condition of conservation of  the area of  the 

midsection of the body - -  takes the form 

x / m  7t" (~/2 
ye - dO = , (3.4) /t o 

The two additional problems that were examined are as follows. 
4. The volume of  the body and the maximum radius of the transverse contour are both assigned (gl > ~-/2). 

5. The Volume and the maximum gx and minimum go radii of the transverse contour of the body are all assigned. 

518 



Here, the functional I2I is maximized. This functional is equal to the ratio of H (2.4) to the corresponding depth of 

penetration of an equivalent solid of revolution having a conical head with a relative thickness r. This approach clearly shows 

the advantages of optimum three-dimensional bodies of classes 1 and 2 compared to an equivalent solid of  revolution. In 

addition, I:I is independent of the mass of the body. 
In accordance with (2.4), (3.2)-(3.4), if no conditions are imposed on the ends of the extremal, the solution of the 

problem will depend on the following parameters: 

2' C ' , -7", "" (3.5) 

The order of  v o at which we can ignore the loss of velocity during the period in which the head has not yet fully 

penetrated the medium corresponds to cases in which the second parameter in (3.5) has a value > O(1). If  the ends of the 

extremal are fixed, then 2go/r and 2gl/r  must also be added to (3.5). The first parameter will be absent from (3.5) for thin 

bodies ((r/2) 2 < < 1). The fourth parameter in (3.5) indicates that Coulomb friction is an important parameter of  the problem, 

since 2lz /r  = O(1) for actual media. It should also be pointed out that it is not possible to obtain additional information on 

limiting the number of  parameters determining the solution of the problem without using necessary conditions for the extremum. 

This was done in [1] for thin bodies, where one condition was a criterion for a change in the optimum contour from circular 

to noncircular. 
4. Method of Solution. To solve the problems formulated above, we developed a numerical algorithm based on the 

method of local variations [2]. 
We divide the interval of integration [0, ~-/n] into N equal parts with the step r 1 = ~r/(nN), and we introduce the 

notation 0 m = mr  I (m = 0 ..... N) and gm = g(0m)" Then in accordance with the linear interpolation of  g(0) and the first order 

of the finite-difference approximation of its derivative on the interval A0, the integrals in (2.4) are represented by the formulas 

N 

i ,  -- Y, / (L~. )  = ~ (~ = l ,  2, 3), 
,,-1 (4.1) ! 

z,.(g, = [g" + g"-' g" 

t 

where fi are integrands. 
In accordance with (4. I), we need to find a distribution of gm (m = 0 ..... N) that satisfies the boundary conditions, 

condition (3.1), and isoperimetric condition (3.3) (or (3.4)), giving us the maximum of the functional I2I. 

The algorithm consists of the following steps. We choose the initial approximation for the transverse contour g(O) so 

as to satisfy the isoperimetric and boundary conditions and we calculate I~I on it with the use of (4.1). Then we successively 

vary the component gm for each m E [0, N], where ~grn = h (h being an assigned value). We check the boundary conditions 

and condition (3.1) for each variation. An additional variation of the contour g(0) is performed at a certain point O l (l ~ m) 

to satisfy isoperimetric condition (3.3). Here, the variation 5gl = ht is connected with h for isoperimetric conditions (3.3) and 

(3.4), respectively 

h, = -h~/gZ, , , ,  h t = - h g ,  / g  r (4.2) 

After replacing gm by gm + h and replacing gt by gt + h/, we calculate integrals (4.1) and the functional 1"7I. Of the 

variations ~gt = hi (l ~ m), we choose that which for the given variation ~gm = h leads to the maximum increase in }zI. The 

procedure just described is repeated for the variation ~gm = - h .  As a result, g(O) is matched with the new values g m +  ~grn 

that, together with the reciprocal variation of the contour at point O l, yield the greatest increment in I7/. 

The iteration is considered complete if the possible variations of the contour have been completed at all points Om. At 

the end of the iteration, we obtain a new approximation for the distribution of gm that satisfies the isoperimetric and boundary 

conditions. The functional I:I for the new approximation is no smaller than for the initial approximation. If  17I does not increase 

after the next iteration is performed for the assigned h, then h is halved and calculations are continued until 5g m becomes 

sufficiently small. We then halve r 1, i.e. we double N - -  the number of subdivisions of the interval [0, 7r/n]. The values of 

gm at the new points are determined by linear interpolation over adjacent points of the previous distribution and the iteration 
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is begun again. When ~'1 becomes sufficiently small and no significant increase occurs in the functional (0 < AI2I < E), the 

computation performed to find the optimum distribution of gm can be considered complete. 

To make clearer the meaning of "sufficiently small," we need to examine the convergence of the above-described 

method. It can be shown that the solution obtained by the method of local variations satisfies a finite-difference approximation 

of the Euler equation in the variational problem to within terms of order max (h, h/~il) on the arcs of the extremal 6 > 0. It 

follows from this that the sought solution will be obtained from a computation performed with h < < rl 2 and r 1 --, 0. 

A numerical experiment showed that if the ends on segment [0, z/n] are not fixed under conditions (3.3)-(3.4) or if 

only minimum value go of g(0) is assigned, the method of local variations ensures convergence to the same solution for any 

initial distribution gin" However, as was shown in [1], the weak variations in the given method do not always yield a solution 

to the variational problem. In the case of isoperimetric conditions (3.3)-(3.4) and boundary conditions in which either g: or 

g: and go are assigned, convergence depends on the initial distribution of gm because of the order of approximation (4.1) and 

the weak variations of 6(0), which are in turn a consequence of condition (3.1) and the above-indicated ratio of the orders of 

h and r 1. 
The choice of initial approximation becomes particularly important in this case. Regardless of  the boundary conditions, 

a successful choice substantially reduces the time spent on searching for a solution to the variational problem by the method 

of local variations. 
It is known [1] that the optimum transverse contour of a thin three-dimensional body consists of a set of circle arcs 

corresponding to sections of surfaces of circular cones and regular arcs (g > 0) with variable curvature. The arcs contact one 

another at points of inflection of the transverse contour. However, two factors make it inexpedient to simply adopt the optimum 

contour in the theory of thin bodies as the initial approximation. First of all, a great deal of  time is required to find this 

contour. Secondly, the optimum contour for a thick body may be quite different. 

In light of this, preference is given to an initial approximation which is a contour consisting of  circle arcs (g = 0) and 

regular arcs (g > 0) - -  segments of straight lines corresponding to plane sections of the surface of  the head of the body. The 

arbitrary parameters involved in the selection of the class of arcs comprising the initial approximation are determined in 

accordance with the imposed isoperimetric and boundary conditions. If  the number of arbitrary parameters is greater than the 

number of conditions, remaining parameters are chosen on the basis of which yield the highest value of I2I. Numerical 

calculations showed the effectiveness of taking this approach to selection of the initial approximation of  contour in the program. 

Determination of the form of the head of a body consisting of sections of a circular cone (g = 0) and planes (g > 0) 
so as to maximize tqI (where allowed by the set of isoperimetric and boundary conditions) is a problem which is important on 

its own. From a practical viewpoint, such a shape is the simplest possible three-dimensional configuration for the head of a 

body corresponding to the formulation of the problem. In addition, solution of the problem allows us to directly establish the 

extent to which this shape differs from the configuration that is optimum with respect to depth of penetration. 
5. Results of Calculations. As an example, below we present the results of calculations performed to optimize the head 

of a body. The calculations consisted of four cycles (n = 4). The body penetrated loamy clay with an initial velocity v 0 = 400 

m/sec. For comparison, we examined a circular cone with the relative thickness r = 2x/g '~z/L = 2/3. We used three 

interaction modes: Sagomonyan's analytical model [3] and the empirical models of Zubudskii and Berezanskaya [5]. The depth- 

of-penetration functional has the form (2.5) for the first two models and (2.6) for the third model. 

Calculations were performed for both classes 1 and 2. The minimum of g(0) on [0, z/n) was assigned a single value 

for all cases: go = 0.25. Figure 3 shows the optimum cross section of the head of a class 1 body in one of its cycles. The 

optimization was done within the framework of the model in [3] with the use of isoperimetric condition (3.3). Solid curves 1-3 

correspond to the sections (1 = 0.08, ( = 1, ~2 = 1.33 (see Fig. 1), while the dashed curves correspond to the initial 

approximation of  the transverse contour in the sections ~ 1 = 0.56, ~ = 1. Here, the relative depth of  penetration of a body 

with an optimum head tzI = 1.89, while the initial transverse contour I;I' = 1.48. 
The same isoperimetric condition was used to fred the optimum transverse contours of  the head within the framework 

of the Zabudskii and Berezanskaya models [5]. The calculations showed that the type of model has only a slight effect on the 

optimum form of the head - -  which is depicted qualitatively in Fig. 3 for the two indicated models. Curves 1 and 2 correspond 

to the sections ~1 = 0.08 and ~ = 1 for the Zabudskii model, these results agreeing with model calculations in [3]. The relative 

depth of penetration of  a body with an optimum head I7I = 2.31. For the initial approximation of its cross section, I7I ' = 1.64. 

Accordingly, curves 1 and 2 for the Berezanskaya model correspond to sections ~1 = 0.07, ( = 1 and IZI = 1.38, 17t ' = 1.2. 
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Fig. 3 Fig. 4. 

Thus, the form of the optimum head is conservative with respect to the choice of the interaction model, given the 
appropriate isoperimetric and boundary conditions. The difference between the absolute values of 17I and I71' is due to the 

different approaches taken to construction of the interaction models that were used and the approximate nature of these models. 

Another important result of the calculations was the substantial decrease in the maximum overload p for the body with 
the optimum head relative to the overload experienced by the solid of revolution with a conical head. 

The ratio of the indicated values of p (in the case when the head has its initial contour in the cross section ~') takes 
the following values for the Sagomonyan, Zabudskii, and Berezanskaya models, respectively: p = 0.42, p '  = 0.62; p = 0.41, 

= 0 . 5 9 ;  = 0 . 7 2 ,  = 0 . 8 3  

Figure 4 shows optimum cross sections of class 2 bodies (solid line) and the initial contour (dashed line) in one of its 
cycles under condition (3.4) and with a fixed maximum of g(O) on the interval [0, r/n]: g1 = 0.45. The results were obtained 
using the interaction model in [3] for the penetration of loamy clay. The initial contour consisted of straight lines and circle 

arcs g(0) = gt, resulting in natural blunting of the leading edge of the cycle of the head. As in the case of class 2 bodies, the 
optimum head configuration for class 1 bodies depends slightly on the choice of interaction model. Relative depth of penetration 
and maximum overload in the given_case take the following values for the three above-indicated interaction models: H = 1.29, 

= 0.71, f i '  = 1.23, p'  = 0.76; H = 1.38, p = 0.71, H'  = 1.3, p' = 0.76; fi = 1.14, p = 0.87, f i '  = 1.12, p'  = 0.89. 

The Berezanskaya model yields lower values of relative depth of penetration than the Sagomonyan and Zabudskii 

models for both classes of bodies. The optimum head configurations differ little among these models. The lower values of 
relative depth of penetration obtained with Berezanskaya model can be attributed to the different analytical representations of 
the forces acting on thebody-medium interface as a function of v. This relationship is linear in the Berezanskaya model and 

quadratic in the other models. At the same time, although the Sagomonyan and Zabudskii models have different origins, they 
predict similar depths of penetration. 

On the whole, the calculated data shows that there is a significant advantage to be obtained in terms of depth of 
penetration by changing over from an equivalent solid of revolution to optimum three-dimensional bodies. 

In conclusion, we note that, qualitatively speaking, the optimum contours obtained here by numerical means are in 

complete agreement with the conclusions reached in [1] with the imposition of different boundary conditions on the extremal. 
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